| Name | per date _ | mail box | |---|---|---| | Chemistry Sci 8 | | | | Lab: Ide
<u>Directions:</u> Read through the re- | ntifying Elements, Compounds
view chart below and answer the | s, and Mixtures e pre-lab questions. | | Elements | Compound | Mixture | | pure substance made up of | • 2 or more elements that a | re • 2 or more elements <i>physically</i> | | Elements | Compound | Mixture | |---|---|--| | pure substance made up of only one kind of atom All elements are located on the Periodic Table of Elements Cannot be separated into any simpler form chemically or physically | 2 or more elements that are chemically combined to make a new substance Properties of the elements used to make the compound are changed | 2 or more elements physically combined Elements used keep their original properties (not chemically combined) Homogeneous – two or more substance that are evenly mixed, unable to identify the different substances Heterogeneous –a mixture in which different substances can be identified | ## **Pre-Lab Questions:** - 1. What is the difference between an element and a compound? - 2. How is a heterogeneous mixture different from a homogeneous mixture? - 3. How is the way a mixture is combined DIFFERENT from how a compound is combined? - 4. What is easier to separate, a mixture or a compound? Explain why? - 5. Which can be found on the periodic table: elements, compounds or mixtures? 1. Synthesis Reaction: when two or more substances during a chemical reaction and become one. Example: $A + B \rightarrow AB$ https://youtu.be/Y3kDZXP4 5A?t=222 2. <u>Decomposition Reaction:</u> describes when one into two or more simpler substances. Example: $AB \rightarrow A + B$ https://youtu.be/MUensqImzXM 3. <u>Single Displacement Reaction:</u> this is when one element _____ in a compound. **Example:** $A + BC \rightarrow AC + B$ https://youtu.be/OxGjbHzxQSI 4. <u>Double Displacement Reaction:</u> this is when two elements _____ in a compound. **Example:** $AB + DC \rightarrow AC + DB$ | Name | per | due date | mail box | |------------------|-----|----------|----------| | Chemistry Sci. 8 | | | PREP | ## **Types of Chemical Reactions** <u>Directions:</u> Write the correct letter on the line that best defines each term. | Term | Definition | |---------------------------|--| | 1. Double Displacement | A. when two or more substances combine together during a chemical reaction and become one. (A + B \rightarrow AB) | | 2. Decomposition Reaction | B. describes when one substance breaks down into two or more simpler substances. (AB \rightarrow A + B) | | 3. Single – Displacement | D. this is when one element replaces another in a compound. (A+BC \rightarrow AC+B) | | 4. Synthesis Reaction | F. this is when two elements replace each other in a compound ($AB + DC \rightarrow AC + DB$) | | Synthesis Reaction | Single Displacement Double Displacement | Decomposition Reaction | |--------------------|--|-------------------------------| | * | | | | | 1 . AgNO ₃ + H ₂ S \rightarrow Ag ₂ S + 2HNO ₃ | | | | | | | | $_2$. Al + N ₂ \rightarrow 2AlN | | | | | | | | _3. Fe ₂ O ₃ + H ₂ \rightarrow 2Fe + 3H ₂ O | | | | | | | *** | $_4. Mg(ClO_3)_2 \rightarrow Mg + Cl_2 + O_2$ | | | Balancing | Chemical | Equation | Notes | |-----------|--------------|----------|--------| | | CARCIALLOUIA | | ****** | | Quiely Devriers | | incing chemica | Lquation | lotes | | |-----------------------|-----------------------|-----------------------------------|-----------------|---------------------------------------|---------------------------------------| | uick Review | | | | | | | | <u>mula-</u> represen | tation of how | * | | make up | | a compound | | | | | | | | | | | | | | Shows TWO th | nings | | | × | | | • . the | elements that r | nake up the com | pound | | * a = * | | • the | number of ator | ns of each eleme | nt called | | | | | | H_2O = the 2 is a | subscript. | | | | | | (H= 2 ar | nd 0= 1) | | | | CaCO ₃ | | | | | | | | | | | | | | CH ₄ | | * * | | | | | OTT . | | | | | | | $C_6H_8O_7$ | | | | | | | C6118O/ | | | | | | | Coefficient is | the number of | | | in a ab and | and reportion | | Coefficient 18 | | - the 2 names | nto a so offici | | cal reaction. | | | | = the 2 represe | | | | | | 50, Z K | I units are involv | | eaction. | | | | | Or KI a | na Ki | | | | | | | | | | | Examples: | | | | · · | | | $2H_2O$ | | . W | | | | | * | | | | | | | 2NaCl | | | | | | | | | | | | | | 2CO ₂ | | | | | | | | * | | | | * | | Chemical Equa | ation - describe | | | ir | a simple way | | * | | | | | | | Balancing Che | mical Equation | ıs: | | | | | Kinds of | | ber of Atoms | | | | | Atoms | Ag + H ₂ S | \rightarrow Ag ₂ S + | H_2 | | | | ricoms | 116 . 1120 | 11620 | 112 | w: v | | | Ag | | , | - | | · · · · · · · · · · · · · · · · · · · | | Ag . | 1 1 | : | | | | | Н | | , | | | | | н | , | | | # # # # # # # # # # # # # # # # # # # | | | 7 | | | | | | | 1 | * * | | | | | | Kind | s of Atoms | Number of Mg + | of Atoms $O_2 \rightarrow$ | MgO | | | |------|------------|----------------|----------------------------|------------------|--|--| | Mg | | | | a s ^h | | | | | | 8 8 | | | | | | 0 | | | 2 H | | | | | Kind | ls of Atoms | 4. | of Atoms
NaBr → | NaCl + | Br | | # A A A A A A A A A A A A A A A A A A A | | |------|-------------|----|--------------------|--------|------|--|---|-----| | Cl | | | | | 10.0 | | | | | Na | | | | 20 g | | | | * . | | 3r | | | * * | | | | | | | Kinds of
Atoms | Number of Atoms
CuCl ₂ + H ₂ S | → CuS + HCl | | | |-------------------|---|-------------|----|---| | Cu | | | T. | | | Cl | | | | | | H | | | | 1 | | S | | *. | | w # # # # # # # # # # # # # # # # # # # | **Balancing Act** Atoms are not created or destroyed during a chemical reaction. Scientists know that there must be the *same* number of atoms on *each side* of the equation. REMEMBER – you may *add coefficients* in front of the chemical formulas, but you *can not* add or change the *subscripts*. | 1Ca +O ₂ | →CaO | |--|---| | Ca = | Ca = | | 0= | O= | | 2C ₃ H ₈ +O ₂ | \rightarrow CO ₂ +H ₂ O | | C= | C= | | H= | H= | | | | | ð= | 0= | | 3 Cu ₂ O + C | \rightarrow Cu +CO ₂ | | Cu= | Cu= | | O= | O= | | | C= | | 4Na +H ₂ O \rightarrow | NaOH +H ₂ | | Na= | Na= | | H= | H= | | O= | O= | | | | $5. \underline{Mg} + \underline{O_2} \rightarrow \underline{MgO}$ Mg= Mg = 0= 0 = 06. ___CH₄ + ___O₂ \rightarrow ___CO₂ + ___H₂O C= C =H =H= 0= 0 = 07. $Al + O_2 \rightarrow AlO_3$ Al =Al= 0= 0= 8. $\underline{\hspace{1cm}}$ SnO₃ + $\underline{\hspace{1cm}}$ H₂ \rightarrow $\underline{\hspace{1cm}}$ Sn + $\underline{\hspace{1cm}}$ H₂O sn =Sn= 0= 0= H= -H= 9. $P + O_2 \rightarrow P_2O_5$ P =P= 0= 0= 10. $\underline{\hspace{0.1cm}}$ K + $\underline{\hspace{0.1cm}}$ MgBr₂ \rightarrow $\underline{\hspace{0.1cm}}$ KBr + $\underline{\hspace{0.1cm}}$ Mg K =K= Mg= Mg= r=Br= ## **Balancing Equations** **Directions**: Balance the following equations. You must show all your work. 1. $$6.$$ ___C +___H₂ \rightarrow ___CH₄ 2. 7. ___CuCl₂+ ___H₂S $$\rightarrow$$ ___CuS + ___HCl 3. 8. $$C_2H_6 + C_2 - C_2 + H_20$$ 4. 9. ___N₂ +___ $$H_2 \rightarrow$$ ___NH₃ 5. $$10. _{NaCl} + _{F_2} \rightarrow _{NaF} + _{Cl_2}$$ - 1) ___ $Fe_2O_3 +$ __ $SiO_2 \rightarrow$ __ $Fe_2Si_2O_7$ - 2) ___ Fe + ___ $H_2O \rightarrow$ ___ $Fe_3O_4 +$ ___ H_2 - 3) $O_2 \rightarrow O_3$ - 4) $Na_2Cr_2O_7 + S \rightarrow Cr_2O_3 + Na_2SO_4$ - 5) ____ $Bi(NO_3)_3 +$ ___ $H_2S \rightarrow$ ___ $Bi_2S_3 +$ ___ HNO_3 - 6) ___ $PCI_5 + __ H_2O \rightarrow __ H_3PO_4 + ___ HCI$ - 7) NiS + $O_2 \rightarrow NiO + SO_2$ - 8) ___ Al + ___ FeO \rightarrow ___ Al₂O₃ + ___ Fe - 9) ___ NaCl + ___ $H_2SO_4 \rightarrow$ ___ Na₂SO₄ + ___ HCl - 10) ___ MgNH₄PO₄ \rightarrow ___ Mg₂P₂O₇ + ___ NH₃ + ___ H₂O - 11) ___ PbCrO₄ + ___ HNO₃ \rightarrow ___ Pb(NO₃)₂ + ___ H₂CrO₄ - 12) ____ AgBr + ___ Na₂S₂O₃ \rightarrow ___ Na₃[Ag(S₂O₃)₂] + ___ NaBr - 13) ___ $Fe_2(SO_4)_3 +$ __ $KOH \rightarrow$ __ $K_2SO_4 +$ __ $Fe(OH)_3$ - 14) ___ $Ca_3(PO_4)_2 +$ __ $H_2SO_4 \rightarrow$ __ $CaSO_4 +$ __ $Ca(H_2PO_4)_2$